Гиперпараметр – это конфигурация Модели (Model) Машинного обучения (ML), оптимальные настройки, которые невозможно вычислить с помощью Датасета (Dataset) и предстоит определить в ходе итеративного обучения:
Пример. Запустите 8 ячеек ноутбука "Validation in Practice: Grid Search" из документации Colab: здесь утилита GridSearchCV автоматически подбирает гиперпараметры Полиномиальной регрессии (Polynomial Regression):
6x5 + 5x4− 3x2+ x
. Пятая степень (6x5
) – это и есть [наивысшая] степень многочленов.Существует важное отличие между параметрами модели и ее гиперпараметрами: если первые зачастую подбираются автоматически, то вторые определяются в ходе обучения Алгоритма (Algorithm) Дата-сайентистом (Data Scientist) и помогают определить наилучшее уравнение, описывающее зависимость Предикторов (Predictor Variable) и целевой переменной.
Примеры параметров:
Автор оригинальной статьи: Jason Brownlee
©2025 Лена Капаца. Все права защищены.